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Two-dimensional inertial motion of pyramidal bodies in a medium is investigated, on the assumption that the force exerted by 
the medium on their surface is described by the local interaction model. Assuming unseparated flow around the bodies and small 
perturbations applied at the initial time to the parameters of rectilinear motion, an analytical solution is constructed of tbe problem 
of the two-dimensional motion of slender bodies with bases whose contour is a rhombus or a star consisting of four symmetrical 
cycles. It is shown that the solution provides the basis for a complete parametric analysis of the dynamics of the body and for 
evaluating the forces and torques experienced by the body along its trajectory. A criterion for the stability of the body is found, 
using which, knowing the velocity, mass and position of the body’s centre of gravity, one can determine the form of the perturbed 
motion of the pyramidal body. It is shown that the body shape is one of the most important factors affecting the stability of motion, 
and that, of all bodies with the same shape and position of the centre of mass, those with the least mass have the iargest reserve 
of stability. The analytical results are confirmed by numerical solution of the Cauchy problem for the system of equations of 
motion obtained without the simplifying assumptions. 0 2003 Elsevier Science Ltd. All rights reserved. 

lems relating to optimizing the shape of a body (for drag and depth of penetration) have been 
solved using the local interaction model (LIM) [l-3], on the assumption that the base area and length 
of the body are given, without simplifying assumptions about the body geometry [4-61. It has been shown 
that bodies of minimum drag [4-61 and maximum depth of penetration [7] are formed by pieces of 
surfaces whose normal makes the optimum angle with the direction of motion, where the optimum angle 
is determined by the characteristics of the medium and the initial velocity of motion. It has been shown 
[7] that in the general case bodies of maximum depth of penetration and bodies of minimum drag have 
different optimum angles. A method has been proposed for constructing optimum shapes, using which 
one can design an infinite set of optimum configurations, including pyramidal configurations consisting 
of pieces of planes tangent to the optimum cone [4-61. 

Optimum shapes have been constructed for rectilinear motion of the body [4-71. The motion of the 
body in a real medium may be perturbed, and then, as investigations of the dynamics of slender axi- 
symmetric bodies have shown [8-lo], the velocity of the centre of mass may deviate considerably from 
its initial direction, and the body’s trajectory of motion is strongly curved. Intensifying the perturba- 
tions may cause the body to overturn, and then the theoretically predicted depth of penetration is 
unattainable. Thus, the bodies constructed in [4-71 will possess the promised optimum characteristics 
only if their rectilinear motion is stable to small perturbations of the initial parameter values. 

Investigation of the effect of perturbations on the characteristics of the motion of the body and the 
development of stability criteria are important stages in research on the properties of optimum bodies. 
A complete solution of the problem of the dynamics of the body, including the construction of the 
trajectory of motion, will enable an exact solution of the problem to be obtained. However, the problem 
is multiparametric even for two-dimensional motion of slender bodies of revolution, and an analytical 
solution has been found only for a slender cone and for motion in which the medium flows around the 
body without separation [S, 91. The presence of zones in which the medium separates at the body surface 
complicates the problem, and in that case analytical investigation of the problem has been confined to 
an analysis of the stability of the motion of the body at the initial stage [lo]. Numerical investigations 
of the problem of the dynamics of the body have shown that a solution within the framework of the 
LIM may be found for any initial conditions and with no restrictions on the body’s mode of motion [3]. 
However, a numerical solution, while of undoubted value, cannot lead to the general laws of motion. 

In what follows; the LIM will be used to carry out a numerical and analytical investigation of the 
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two-dimensional inertial motion of pyramidal bodies formed, like the optimum bodies of [4-T], by pieces 
of planes tangent to a circular cone. 

I. THE MODEL OF THE INTERACTION OF THE MEDIUM AND THE BODY 

Consider the inertial motion of a body in a medium, on the assumption that the body is completely 
immersed in the medium at the starting time and that the influence of the medium’s free surface on 
the motion of the body is negligible. 

We will write the force exerted by the medium on the body in the form 

where o, and o, are the normal and shear stresses at the body surface, n and I are the unit vectors of 
the inner normal and the tangent to the surface element, and integration is carried out over the body- 
medium contact surface S. 

Let us assume that each element of the surface S interacts with the medium independently of other 
parts of the body, and that the force exerted on it can be described by a local model. To denote the 
normal stress we shall use a two-term formula with a dynamic term and a strength term; the friction 
at the body surface is assumed to be constant: 

on = A,(Un)2tC,, os = C, (1.2) 

The positive coefficients Al, Ct and CZ are constant parameters of the model, determined by the 
characteristics of the medium, U is the total velocity of an element of the surface: U = U, + [a x r], 
where U, is the velocity of the centre of mass, fi is the angular velocity of revolution of the body, and 
r the radius vector of the element with its initial point at the centre of mass. 

Model (1.2) is a special case of the representation of the stresses within the framework of the LIM. 
It has been shown [ll] that, with certain assumptions, formulae (1.2) describe the stresses at the surface 
of the body as it moves in a gas or in dense media like soils or metals. The term Ct in that case 
characterizes the resistivity of the medium to deformation, and the coefficient At is of the order of 
magnitude of the density of the medium. The constant friction model (1.2) is frequently used to calculate 
the forces acting on a body penetrating into elastoplastic media [lo], in which case CZ = zs, where 2, is 
the plastic friction. The values of Al, Ct and C, for actual media are either obtained by solving model 
problems [l-3] or determined experimentally. For example, for argillaceous media, according to the 
solution obtained for an incompressible elastoplastic medium [3], one can take 

A, = 3~~12, C, = 42,(1 + ln(y/z,))/3, C, = z, (1.3) 

where p. is the density of the medium and u is the shear modulus. 
Within the scope of the LIM, the vector z is collinear with the vectors U and n: 

z = [[Uxn]xn]/][Uxn]] (1.4) 

and the surface S is defined by the condition 

(U.n)<O (1.5) 

The selected model enables us to express the force F of (1.1) explicitly as a function of the body shape 
and the parameters of the motion, in which the characteristics of the medium occur as constants. 

2. THE CLASS OF CONFIGURATIONS UNDER INVESTIGATION 

The body shape is assumed to be given and consists of pieces of planes tangent to a circular cone. 
In a cylindrical system of coordinates (r, 6, xi) with origin Oi at the vertex of the body and axis Orx, 

pointing along the axis of the cone, the equation of the surface of the cone is 
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Fig. 1 

where ri = tgai, al being the semi-vertex angle of the cone. We shall assume that al, as well as the 
length L and the base area Sb, are given and all linear dimensions are in units of L: x1 E [O, 11. 

The class of configurations to be investigated will be limited to pyramidal bodies with two and four 
planes of symmetry, the shape of whose base is a rhombus or a symmetric four-pointed star whose sides 
belong to straight lines tangent to the circle of radius rl. 

An example of a rhomboid configuration is shown in Fig. 1, where the OlxlxZ and Otxixs planes of 
the Cartesian system of coordinates O1xlxZxs are the planes of symmetry of the body. The contour of 
the base is a rhombus and the radii of its vertices are related to r1 as follows: 

r. = rllcoseO, rf = r,lsin8a 

The angle e0 is determined from Sb by the condition 

2 
2r0rf = TCrb, rb = (S,lx)“2/L 

Setting 

(2.1) 

b = (R,lRk)2; R, = r,lrb, R, = lc’“/2=0.89 

we write t!10 in the form 

8, = arccos((P/2)“‘2), P = P,,, = I f(l -b2f2 (2.2) 

For b < 1 (Ri < Rk) there are two values of P: Pi E [l, 2) and P2 E (0, l] and two angles @a. To each 
of these corresponds a rhomboid body whose surface is described by the following equation in (I, 0, .~t) 

r = r(C), n,) = 5 1r1*1 
cos(fl-5,52%J 

; 5, = sign(cose), c2 = sign(sin8) (2.3) 

The angle 0 is measured from the 01x3 axis. 
If P = Pl, then 0a < n/4, r. < rf, and rf is the maximum radius of the body (see Fig. 1). If P = P2, 

then O. > 71/4, r. > rf, and the maximum radius of the body is ro. We will call a configuration with 
r. < rf horizontal, and one with r. > rf vertical. Each of these shapes is obtained from the other by a 
90” rotation about the Olxl axis. 

An example of a pyramidal body with star-shaped base contour is shown in Fig. 2, from which it follows 
that a star-shaped body is formed by pieces of the surfaces of two rhomboid bodies (2.3) rotated through 
90” with respect to each other. Since the body is constructed for a given base area S,, the angles e. for 
the vertical and horizontal configurations (2.3) are equal to 8t and Q, respectively (see Fig. 2b), where 

8, = arctg([l + [l +4b(l -b)]“*]l(2b)), 8, = ~c/2-f3~ (2.4) 

The constructions of bodies just described are possible for RI d Rk when b d 1. If RI = Rk, then 
b = 1 and, as follows from (2.2) and (2.4) e. = rc/4 for all shapes. Then the base contour of the body 
is a square and all the bodies have the same geometry. 
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Fig. 2 

3. THE EQUATIONS AND PARAMETERS OF MOTION 

Let us assume that each point of the body describes a trajectory in a plane parallel to the plane of symmet- 
ry of the body, Orxr_~~. Then the vector Q of the angular velocity of revolution of the body is normal to the 
01x1x3 plane and, relative to the system of coordinates 01x1xzx3, has a single non-zero component n. 

Suppose the centre of mass of the body is at a point C on the Orxr axis, at a distance C, from the 
vertex of the body: C, E (0, 1). We introduce two right-handed systems of coordinates: a stationary 
system OXYZ, whose origin coincides with the point C at the starting time, and a moving system of 
coordinates Cs1szs3 rigidly attached to the body. 

We shall assume that the OX axis is pointing along the Otxz axis, while the OY axis is taken to 
correspond with the direction of the gravity force, making an angle ‘p. with the velocity vector U, of 
the centre of mass at the starting time. Then the vector U, always lies in the OYZ plane and the position 
of the centre of mass relative to the system OXYZ at time t is defined by two coordinates, Y(t) and Z(t): 

dY uc dZ u, . -= 
dt 

-poscp, dt= -.F~ (3.1) 

where U, = 1 U, 1, and cp = q(t) is the angle between U, and the OY axis, where ~(0) = cpo. 
The axes of the moving system of coordinates Cs1s2ss are attached to the body, being placed in the 

planes of symmetry of the body so that s1 = x2, s2 = -x1 and s3 = x3, where xl, x2 and x3 are the unit 
vectors of the system of coordinates 01n1nczx3 (see Fig. 1). The direction of the vector U, in the system 
of coordinates Cslszss is defined by the angle l? U, = U,{O, cosr, -sinIT). 

In two-dimensional motion, with a known distribution of the forces exerted on the body, the quantities 
G(t), cp(t), a(t) and r(t) are found as functions oft from the dynamic equations of motion (see, e.g. 
(12]), which can be written as follows for a body of mass m and moment of inertia I1 about the Csr axis: 

dfic _ F2 dq F3 dSZ M, dx = m F, 
dt - m’ x= mU, dt= 7’ dt mu, 

where M1 is the component of the moment of the forces about the s1 axis, and F2 and F3 are the 
components of the resultant force in the respective directions of the vector U, and a vector c3 normal 
to U,, whose form in the attached system of coordinates is c3 = (0, sinr, cosr} (see Fig. 1). The forces 
acting on the body, which is moving by inertia through the medium, are the forces due to its interaction 
with the medium and also the gravity force; hence 

F, = F,, + mgcoscp, F, = F,, -mgsinv 

where g is the acceleration due to gravity, and F,, and FC3 are the components of the force F of (2.2), 
derived using model (1.2). 

For the surface (2.3) the vectors n and U occurring in the first formula of (1.2) and the scalar product 
(U . n) may be expressed as follows: 
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n = (1 + a2)-“2{~,sin8,, -a, -~Icost30) 

U = u,cosr{o, I- wrbrcose, -rJy - o(C, - x1))} (3.3) 

(U.n) = r,U,cosr(- 1 +or,rcos0+5,(r-w(C,-xl))l(Rocosa,B) 

where 

a = (n.xl) = sinar, R, = rOlrb, y = tgrlrb, 0 = 12Ll(rbUccos~) 

(y and w are non-dimensional parameters of the motion of the body about its centre of mass). Here 
and below, the coordinates of the vectors are given in the attached system of coordinates. 

Substituting formulae (3.3) into Eqs (1.2) and (1.4) and integrating in (1.1) over the surface S (1.Q 
one can express the force F and its components as functions of the variables U,, r and a. The system 
of equations (3.2) may be integrated if the initial values of U,, cp, Q and r are known. However, if it is 
assumed that the medium may separate from the lateral surface of the body, the surface S will be 
determined during the solution process, and in that case the system can be integrated only numerically. 

A program has been written to compute the dynamics of the pyramidal body (2.3); it is based on 
solving a Cauchy problem for the system of equations of motion (3.1) and (3.2) without restrictions 
on the form of motion of the body. Computations using this program will be used below in Section 7 
to confirm the analytical results obtained in Sections 4-6 under simplifying assumptions. 

4. BASIC ASSUMPTIONS OF THE THEORY 

An analytical solution of the system of equations (3.1) and (3.2) will be constructed for slender bodies 
(~2 G l), on the assumption that the medium does not separate from the lateral surface of the body. 
Then the surface of integration S in (1.1) is the entire surface of the body (2.3). Condition (1.5) must 
hold on that surface, from which, taking (3.3) into consideration, we obtain the following restrictions 
onyand o 

The quantity RO for star-shaped bodies is found from ro (2.1) with 8,, = e2 (2.4). Hence it follows that 
EYI <Ro, lai c 2Ro, and if we assume in addition that 

ri << 1 (4.2) 

then formulae (3.3) and the vector T (1.4) can be written as 

n = {52sin00,-a,-51cos00> 

u = h/,(0, L-P(r-NC&-Xr))] 

(U.n) = aU,[- 1 +~,f~-O(C,-xr))lRo] 

r = -u-a[l-5,(r-W(C,-~~))IR,]n, u = U/U, 

(4.3) 

where 

y = s/p, 0 = QLl( pu,> 

0 being the semi-vertex angle of a circular cone of length L with base area &,: p = arctg rb = rb 
(P” 4 1) 

Taking the above assumptions into consideration, and letting the length of the trajectory of the centre 
of mass 2: dl = (lJ,/L)dt be the independent variable, we can rewrite Eqs (3.2) in terms of the variables 
Or,, cp; Y and ~0 

(4.4) 
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The non-dimensional quantities ml,f2 and f3 are defined in terms of the components Ml, FZ and 8’3 

ml = M,IN, f2 = F,LIN, f3 = F,LIN; N = mVf 

Ignoring the gravity force and using formulae (4.1)-(4.3) to evaluate the moment and components 
of F (l.l), we can write ml, fi and fs in the form 

ml = -A,PfP[yzf + o(z,zf + E,/18)1 

f2 = -A,$( 1 + D + [y(y + oz,) + (y + wz,)‘/2 + &36]P&) (4.5) 
fs = A,P#(V, + @z,E,) 

We have used the following notation 

A,,, = 3A,lp,, z, = i-C,, zf = z,EZ+ 2cr2/(3Pf) 

D = D,+D2, D, = C,I(A,V;a*), D, = Czl(A1V$x3) (4.6) 

2 
E, = 1 -ct (1 + D, +D,PfI2)IPf, E, = 1 + a2D2(2 - Pf)l(2Pf) 

where pm is the average density of the body: pin = m/V, Y is the volume of the body and Pf is the shape 
parameter. For star-shaped bodies, Pf = 1, and for rhomboid bodies Pf = P, where P is found from the 
second formula of (2.2). 

In rectilinear motion, cp = (po, y = o = 0, and the first equation of (4.4) can be written in terms of 
D in the form 

dDld1 = 2A,a2D( I+ D) (4.7) 

Its solution yields the relation of D and U, with the length of the trajectory of the centre of mass 

1 = I, - ln( 1 + 1/D)l(2A,a2) 

E, = ln(1 + 1/D,)l(2A,a2) (4.8) 

Do = D(V,) = (C, + C,Ia)I(A,V~a*) 

where 1, is the total path length and U. is the initial velocity of motion of the body. 
If the body is moving in the medium along the normal to its free surface, 1, is the depth of penetration 

of the body. It has been shown [7] that, if the initial velocity Ua is known, the maximum of I!, for all 
bodies of given mass, length and base area is achieved for bodies constructed of pieces of surfaces whose 
normals make the optimum angle with the direction of motion. This angle may be found by considering 
1, as a function of a, a E [0, 11, and finding a = a” for which Z&a) is a maximum. The number a” is 
independent of the mass, length and base area of the body; it is determined by the initial velocity U. 
and constant parameters of the model (1.2). 

For known U0 and a”, the pyramidal bodies (2.3) are bodies with maximum depth of penetration if 
yl = a*. However, they can only be used effectively when their rectilinear motion is stable to small 
perturbations of the initial values of the parameters of motion of the body about its centre of mass. 

5, MOTION OF THE BODY ABOUT THE CENTRE OF MASS 

Stability criterion. The stability of rectilinear motion of the body will be analysed, and a solution of the 
system of equations (4.4) found, on the additional assumption that the perturbations applied to y and 
o are small and satisfy the condition 

(r2 + 02)PflR; 4 1 (5.1) 

In that case the terms involving y and w may be eliminated from the expression for f2 and then, as in 
the case of rectilinear motion, the velocity of the centre of mass U, will be found from formulae (4.8). 
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Using formulae (4.5) and notation (4.6) we can rewrite Eqs (4.4) for y and o) as 

d_r= 
dl 

-( 1 - A,PfzcE,)(K,E,y - o), d+ = A,Pfx(K,~ - 0) (5.2) 

where 

2 

2 

. Z,Zf + - 18 ~(1+@ 1 Pf , K, = r;m:z E , K, = 
m fc 2 

-z 
1 

(5.3) 

Rectilinear motion of the body is stable if small perturbations of y and o decay in time. This will be 
the case if the trivial solution of system (5.2) is asymptotically stable in Lyapunov’s sense (see, e.g. [13]) 
and all the roots of the characteristic equation of the system have negative real parts. 

Considering D, D1, and D2 as constant parameters, let us write the characteristic equation and 
conditions for asymptotic stability of the trivial solution of system (5.2) as follows: 

h2+b,h+b2 = 0 
(5.4) 

b, = A,P# + E,) > 0, b, = x(A,Pf)‘(E, - KJK,) > 0 

Inequalities (5.4) determine the stability of the trivial solution of system (5.2) in the case when its 
coefficients are constant. The dependence of D on I violates this condition, but if we consider values 
of D less than or of the order of unity, then 

Da2/Pf G 1 (5.5) 

and the parameters D, D1 and D2 may be eliminated from the expressions for the coefficients. 
Then, taking into account that ii - 10-l, we deduce from formulae (4.6) and (5.3) that 

zf = z,+ 2cx2/(3Pf), x = (z,zf + 1/18)/i,, E, = E, = 1 (5.6) 

and the system of equations (5.2) becomes autonomous. In that case its solution is independent of the 
parameters of motion of the centre of mass, and the conditions for the stability of its trivial solution 
(5.4) may be written as a single inequality 

K,IK, < 1 (5.7) 

We will construct a solution of system (5.2) observing condition (5.5) in parametric form, using the 
variable n = w/y. The equation for TJ, in accordance with Eqs (5.2) and relations (5.6) may be written 
as 

dqldl = -(l-A,,&z$T’(q), @(II) = q2+Ky(~-l)q-~KaK., 

If A tl: 0, where A is the discriminant of the characteristic equation (5.4) 

A = (A,Pf)2A, A = (x + 1)2-44x(1 - KJK,) 

the quadratic equations (5.4) and CD(r) = 0 have two roots each: 

h 1,2 = A,Pf(-(x+ l)fA’“)/2, ?I*,~ = K,(l--x+Aii2)i2 (5.8) 

We can thus write the general solution of system (5.2) as 

Y = h,exp(h,l) + h,exp(h,l), 0 = hiriexp@,0 + hzr12exp(h20 (5.9) 

The constants hi and h2 are found from the initial data ‘y. = y(O) and o. = co(O). 
If A < 0, the roots (5.8) are complex and solution (5.9) for the case A # 0 can be written in terms of 

real functions as 
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(5.10) 

(5.11) 

TJ = ;K,(~tgcT+ 1 -x), 0 = -&m+a, 

where u. and o. are the initial values of u and G, found from rlo = &oo/yo, v = (x + l)/tm. 
When condition (5.7) holds, the real parts of the roots ht and hz are negative, the rest point of system 

(5.2) in the (y, 0)) plane is a node (A > 0) or a focus (A < 0), and the trivial solution of the system is 
asymptotically stable. If K,/K, > 1, then A > 0, v < 1, and hi > 0. In that case, the rest point is a saddle 
and the trivial solution of system (5.2) is unstable. 

Thus, the motion of the body is stable if condition (5.7) is satisfied. Taking (5.6) into account, we 
have 

K,IK, = 1 - (1 -AfIA,)I( 18~4~ + I), Af = -lSz& (5.12) 

and condition (5.7) can be rewritten in the form 

4n’Af (5.13) 

The quantity Af is determined by the shape of the body and the position of its centre of mass. For a 
pyramidal body whose mass is uniformly distributed over its volume, C, = 3/4, values of As for such 
bodies are given in Fig. 3 as functions of R1 (R1 = rl/yb = cr./p). The dashed curves 1-3 are constructed 
for /3 = 10” for a star-shaped body (curve 1) and for horizontal (curve 2) and vertical (curve 3) rhomboid 
shapes. 

Along the segment of the path where condition (5.5) holds, the characteristics of the medium enter 
into system (5.2) only via the parameter A,, and the solution will not depend on the skin friction or 

t Al 

OTi -------______ -_ 

4 _.___.-.-.-.-. 

(Fe 2 ___---___------. 

R,=@ 1.0 

Fig. 3 
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on the resistant properties of the medium. The value of A, is independent of the body shape: A, = 
3Alio, - p&,; for example, for incompressible elastoplastic media it follows from the first equality 
of (1.3) thatA, = 9po/(2p,). Increasing the mass of the body while retaining its shape entails a decrease 
in the value of A,, and this, for given Ua, leads to an increase in the length 1, (4.8) of the trajectory of 
the body. However, if at the same time there is no change in the position of the centre of mass, then 
the value ofAfremains negligible, and ifAf > 0, there is a critical mass mf = 3AlV/Af at which condition 
(5.13) fails to hold: A, = Af. This means that the rectilinear motion of bodies of mass m > mfis unstable, 
and when there are small perturbations of the parameters of motion, an investigation of the motion of 
such bodies may not yield the theoretically predicted depth of penetration. 

As an example, Fig. 3 gives values of A, computed from the first equality of (1.3) for a medium with 
p. = 1500 kg/m3. They are indicated by dots on the ordinate axis and correspond to a homogeneous 
body made of aluminium (Al; A, = 2.5), titanium (Ti; A, = 1.5), steel (Fe; A, = 0.85) or tungsten 
(W, A, = 0.38). Analysis of Fig. 3 in accordance with condition (5.13) implies, in particular, that for 
fi = lo” the motion of star-shaped bodies (see curve 1) constructed for any RI and made of steel or 
tungsten is unstable; whereas the lighter aluminium and titanium presses of the same shape will move 
stably in the medium. 

To analyse the stability of the motion of bodies of whose mass is distributed arbitrarily over the volume, 
it is convenient to express the stability criterion (5.13) in the form 

2, = Zf+AmPf/18>0; zy = q-c,, c, = A,Pf118+2(1+a21Pf)/3 (5.14) 

where zY is the stability reserve of the body and C, is the distance from the vertex of the body to the 
critical position of the centre of mass at which stability is lost. Hence it follows that, of two bodies with 
the same shape (same a and Pf> and the same mass distribution over volume (the same C,), the body 
of smaller mass (largerA,) will have the greater stability reserve. This result is in agreement with previous 
work [S, 91 for slender cones, according to which, other conditions being equal, the motion of cones 
with relatively lower mass is more stable. The latest analogous result was obtained for slender bodies 
of revolution [lo]. 

Increasing the base area of a pyramidal body, while keeping its length fixed, leads to an increase in 
the relative thickness of the body and an increase in the angle p. Under those conditions the body shape 
is changed, as is the value of zY. Increasing the angle p for fixed A,, C& and RI leads to an increase in 
the values of a and C, and, consequently, in the stability reserve of the body, zY. 

6. MOTION OF THE CENTKE OF MASS 

The trajectory of the centre of mass of the body is determined from Eqs (3.1) and constructed in the 
fixed system of coordinates OXYZ using the formulae 

1 1 

Y(1) = Jcosqdl, Z(l) = Isin@ (6.1) 
0 0 

The angle cp is found from the second equation of (4.4) which, when condition (5.5) holds, may be 
written, taking formulae (4.5) and (5.6) into consideration, in the form 

dqldl = A,P#(y + WZ,) (6.2) 

The solution of Eq. (6.2) is constructed using solution (5.9) and, using formulae (5.10) and (5.11), 
we can express it in the form 

*>o, ‘P-RI = 5,(u)-%L(“) (6.3) 

5jt"> = Bj(l+ ?ljZ,)(l-(UIUO)n), j = I,2 

Bj = YOP v-3 
n(l -u,)& 

n = -+j 
2 
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*<o* cp-(PO = 5~~,Gf&J) 
5(o) = B,lhsine + vcoso(h - z,ql( 1 + x))lexp(v(o- Go)) 

(6.4) 

B 

0 
= roPlu,,Q 

qc0s0, ’ q = 2x(K,- K,), h = 1 +z,Ky 

The rectilinear motion of the body is stable if condition (5.13) is satisfied. Then perturbations in y 
and CII will decay with time, and the angle cp will approach an asymptote, which, after the motion has 
stabilized, will define a new direction of motion of the centre of mass. This direction is determined by 
the angle cp = (pa, found from formulae (6.3) and (6.4), which may be written in the form 

i 

4, (0) - kJS*(O)r A ’ 0 
(Pa = (Pof I, A<0 

The motion of the body will be defined if D, cp, y and co are known as functions of 1. If conditions 
(5.1) and (5.5) are satisfied, they are found from formulae (4.9, (5.10) and (6.3) if A > 0, and from 
(4.8), (5.1) and (6.4) if A < 0. It follows, in particular, from an analysis of formulae (5.10), (5.11), (6.3) 
and (6.4) that, along the segment of the path where condition (5.5) holds, the stability of the motion, 
the angle cp and the shape of the trajectory of the centre of mass (6.1) are independent of the friction 
and resistant properties of the medium. 

As follows from formulae (4.7) and (4.8), dD/dl > 0, and as Z --+ Z, we have D -+ 00. Hence a segment 
Zd < Z, of the path always exists after which, for Z > Id, condition (5.5) fails to hold, and then the effect 
of the parameter D on the solution of system (5.2) cannot be ignored. An increase in the value of D 
also leads to a decrease in the value of El (see the last formula but one in (4.6)), and it can be shown 
that there is always a number Db such that condition (5.4) fails to hold for D 3 Db. This means that if 
criterion (5.13) implies that the equilibrium position of system (5.2) was stable at the starting time, then 
at D = Db it will bifurcate (see [ 14]), and the presence of small perturbations in y and o will then cause 
them to increase. The effect of bifurcation on the solution of the problem of the body’s dynamics may 
be ignored if conditions (5.4) and (5.5) are violated only in a concluding segment of the path which is 
small compared with the total path length I,: (I, - Z&l, + 1, where Zk = min(Zd, lb) = Z(D,). Using 
formulae (4.8), (5.4) and (5.12), it can be shown that this will be the case if Do satisfies both conditions 
(5.5) and the restriction 

Do + D,, D, = 
Pf( 1 - Af4J _ 1  

a2( 1 + 18ZfZJ 
(6.5 ) 

An analytical solution of the problem of the body’s dynamics was found above for slender pyramidal 
bodies (2.3) constructed from pieces of planes tangent to a circular cone with vertex angle 2a. However, 
if we set a = /3, Pf = 1 and R1 = 1 in (4.5) and (4.6), then formulae (4.6) can be used to determine the 
components of the torque and force experienced by a cone with vertex angle 2p, which is equivalent 
to pyramidal bodies in respect of the mass, length and base area. Then the solution constructed will 
be a solution of the problem of the dynamics of the cone, and it will be identical with the solution obtained 
for star-shaped bodies, apart from the value of zP If the position of the centre of mass is the same, the 
value of z and the stability reserve zy (see (5.14)) 

i 
f or cones is greater, and the value of Af smaller, than 

for star-s aped bodies. As an example, curve 4 in Fig. 4 represents the values ofAffor a homogeneous 
cone with 0 = lo”. 

A star-shaped body is constructed from pieces of surfaces of two rhomboid bodies and has four planes 
of symmetry (Fig. 2). The solution of the dynamic problem was obtained for such bodies on the 
assumption that the motion of the centre of mass takes place in the planes of symmetry that contain 
the maximum radius of the body. It can be shown that this solution is also true when the centre of mass 
is moving in the plane containing the minimum radius of the body; this will be confirmed below by 
numerical calculations. 

7. NUMERICAL EVALUATION OF THE ANALYTICAL RESULTS 

The analytical results were tested by numerical solution of a Cauchy problem for the system of equations 
of motion (3.1) and (3.2) of the body, using a fourth-order Runge-Kutta method. When the components 
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Fig. 4 

of the force F (1.1) were computed, the surface S (1.5) was defined during the course of the solution, 
so that it was possible to make allowance for zones of separation of the medium at the body surface. 
The model medium chosen was one with p. = 1500 kg/m3, for which the constant parameters of the 
model (1.2) were computed using formulae (1.3) with rS = 1 MPa. It was assumed that C1 = 5rS,, which 
corresponds in order of magnitude to the parameters of a soil of average strength. 

The motion of homogeneous titanium, steel and tungsten bodies was considered. The computations 
were carried out with the following initial data: U. = 600 m/s, ‘p. = 0, ‘y. = 0.3 and ~0 = 0. The results 
are represented in Figs 4 and 5 by the solid curves. 

Particular attention was devoted to solving the problem of the dynamics of bodies that yield maximum 
depth of penetration in rectilinear motion. In what follows such bodies will be referred to as optimum. 
For known parameters of the medium, the value of a = a* for optimum bodies is determined from 
the initial velocity U. of the body (see [7]). If U. = 600 m/s we have IX* = 0.115, which corresponds to 
Do = 1.26. Then al = 6.6”, and values of Af (5.12), computed for homogeneous optimum bodies at a 
= a* as functions of Ri, are plotted in Fig. 3 as the solid curves for a star-shaped body (curve 1) and 
for horizontal (curve 2) and vertical (curve 5) rhomboid shapes. 

The trajectories of optimum titanium bodies (R, = 0.66,A, = 1.5) are plotted in Fig. 4(a) for a star- 
shaped body (curve 1) and rhomboid shapes (curves 2 and 3; curve 3 is the trajectory of a vertical 
rhomboid shape). In that case, according to the stability criterion (5.13) only the vertical configuration 
is unstable (see Fig. 3), but here increasing the perturbations in y and o) did not produce a significant 
deviation of the velocity of the centre of mass from its initial direction, and the final positions of the 
centre of mass of both rhomboid shapes are almost the same. Curve 4 in Fig. 4(a) also represents the 
trajectory of a circular cone with /3 = lo”, which is equivalent to pyramidal bodies in mass, length and 
base area. The motion of the cone is stable:Af = 1.12 and& = 1.5, but the length of its trajectory is 
less than the length of the trajectories of the optimum bodies by 10%. 

Increasing the mass of the bodies keeping the shape the same reduces the value ofA,, and if one 
considers the same bodies, but made of steel (Rr = 0.66 andA, = 0.85) only the horizontal configuration 
will be stable. The trajectory of a star-shaped body is then that shown in Fig. 4(a) by curve 5. It is 
strongly curved, corroborating the theoretical conclusion that simply increasing the mass of the body 
may not ensure a greater depth of penetration. Further increase in the mass of the body will have the 
result that, at the very initial stage of the path, the flow of the medium will separate from the body 
surface, and an increase in the values of the angle of attack and angular velocity of rotation (i.e. in the 
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perturbations of y and o) will overturn the body. Curve 6 in Fig. 4(a) represents the trajectory of a star- 
shaped body made of tungsten (Ri = 0.66, A, = 0.38) with the body itself shown schematically at the 
moment of overturn. 

The stability of the motion of the body can be improved by increasing its relative thickness. If a is 
held fixed, this entails a decrease in R1. The trajectories of optimum steel bodies (R, = 0.5, A, = 0.85) 
are plotted in Fig. 4(b) as curves 1-3 for bodies in the same order as curves 1-3 in Fig. 4(a). Here 
condition (5.13) fails to hold only for a star-shaped body (see Fig. 3) so that an unstable mode of motion 
is predicted. Numerical computations confirm this, and the increase in the values of y and w for such 
a body is shown in Fig. 5 by curve 1. The trajectory of a star-shaped body (curve 1 in Fig. 4b) is curved, 
and its length is significantly less than that of the trajectory of rhomboid bodies, as shown by curves 2 
and 3 in Fig. 4(b). The motion of these bodies is stable, the velocity of the centre of mass of the vertical 
form almost maintaining its initial direction: (pa = 10m2. Curves 2 and 3 in Fig. 5 are integral curves in 
the phase plane (7, o) for these bodies. For comparison, curves 4 in Figs 4(b) and 5 plot the trajectory 
and parameters y and (u of a steel cone with p = 13”, which is equivalent to pyramidal bodies in mass, 
length and base area. The motion of the cone is unstable: Af = 0.86, and its trajectory length is 27% 
less than those for the optimum shapes. 

The results of the computations for the dynamics of star-shaped bodies moving in a plane parallel 
to the plane of symmetry of the body passing through the minimum radius of the base are plotted as 
dot-dash curves in Figs 4 and 5. Analysis of the results shows that, until zones of separation of the medium 
appear at the body surface, the parameters of motion of star-shaped bodies are practically independent 
of the plane of motion. 

The analytical solution of the problem of the body dynamics, as obtained in Sections 4-6, is plotted 
in Figs 4 and 5 as dashed curves. For an unstable mode of motion, analytical results are given until 
zones in which the medium separates from the body surface appear, as long as condition (4.1) is 
maintained. It can be shown that, for a stable mode of motion, the numerical and analytical solutions 
are practically identical. Differences appear because the numerical solution took all terms occurring 
in the equations into account, whereas the analytical solution was obtained subject to condition (5.5), 
which enabled us to ignore the parameter D in solving the problem of the motion of the body about 
its centre of mass. 

The theory predicts the bifurcation of the equilibrium position of system of equations (5.2) as U, --+ 0 
(D+ -), which, independently of the original type of solution, causes the values of y and o to increase. 
This has been confirmed by numerical computations, as shown by the arrows attached to curves 2 and 
3 in Fig. 5, which originally corresponded to a stable mode of solution. The largest differences between 
the numerical and analytical solutions of system (3.2) were obtained for a steel vertical shape (see curves 
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3 in Fig. 5). In that case D0a2/Pf = 0.32, and the influence of the parameter D on the numerical solution 
of system (3.2) was felt at the earliest stage of the motion. However, since Dk = 155, condition (6.5) 
was satisfied, and in the final analysis allowance for the parameter D and bifurcation had almost no 
effect on the solution of the problem of the motion of the body’s centre of mass, whose trajectory is 
plotted as curve 3 in Fig. 4(b). 

Note also that the numerical solution was constructed taking into account all forces acting on the 
body, including the gravity force, whose influence was neglected in the analytical solution As follows 
from formulae (4.4) and (4.5), this may be done if 

A,Ufa2( 1 + D) B gL 

which imposes a further restriction on the value of the parameter D 

Dl( 1 + D) -@ 3(C, + C,la)l(p,gL) 

For media of average strength, Cr - C2 - 1 MPa, and when L 6 10 m neglect of the gravity force 
was justified for such media for any values of D. 

Thus, the comparison of the results of the numerical and analytical solutions of the problem of the 
dynamics of the body has shown that the analytical solution, constructed in Sections 4-6 for slender 
pyramidal bodies under simplifying assumptions, yields a good approximation to the exact solution of 
the problem, provided conditions (5.1) (5.5) and (6.5) are satisfied at the starting time. The numerical 
solution yields all types of motion observed in experiments on the high-velocity penetration of solid 
bodies into dense media (151: rectilinear, curved, and motion of the body along a trajectory with overturn. 
It has been shown that the analytical solution may be used to determine the characteristics of the motion 
of bodies for unstable modes of motion also, but only so long as no zones of separation of the medium 
have appeared at the body surface. 

This research was supported the by Russian Foundation for Basic Research (00-15-99039 and 
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